


UNIVERSITY OF

ILLINOIS
LIBRARY

AT
URBANA-CHM*fMGN

A
ENGltjlEtRING



NOTICE: Return or renew all Library Materials! The Minimum Fee tor

each Lost Book is $50.00.
It Ik) O '7 1fkOQ

The person charging this materiaris responsible for

its return to the library from which it was withdrawn

on or .before the Latest Date starriptftj below.
4< < i

.'
' '

Theft, mutilation, and underlining of books are reasons for discipli-

nary actjon*nd may result in dismissal ^^rlfcjjniversity.
To renewtall Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

•JUL * * Wl

L161—O-1096





yMiVERSITV OF ILL!

UR8ANA, ILLINOIS

enter for Advanced Computation
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA. ILLINOIS 61801

CAC Document No. 1+0

AN ILLIAC IV GAUSSIAN ELIMINATION
PACKAGE FOR N0N-CORE-CONTAINED MATRICES

"oy

Susan Ann Pace

September 1, 1972



The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the
Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons

for disciplinary action and may result in dismissal from
the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

L161—O-1096



CAC Document No. kQ

AN ILLIAC IV
GAUSSIAN ELIMINATION PACKAGE FOR

NON-CORE-CONTAINED MATRICES

By

Susan Ann Pace

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

September 1, 1972

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense and was monitored by the U.S. Army Research
Office-Durham under Contract No. DAHC0U-72-C-0001.



Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/illiacivgaussian40pace



6NGINEERM8 U8RAR*

ABSTRACT

Gaussian Elimination is a method used to find the solution

vector x of the equation A x = b where A is any general, non-

singular, square matrix and b is a vector. The process can be

broken down into two independent phases:

(1) The triangular decomposition of the matrix A, and

(2) The back substitution process to find the solution x.

This paper describes the Gaussian Elimination algorithm and

the Illiac IV routines which perform the process.





AUTHOR'S NOTE

Until I/O specifications for ILLIAC IV are completed,

the ASK programs described in this document will not be a-

vailable for use. A revised document, including listings

and output, will be produced at that time.





TABLE OF CONTENTS

Page

1. GAUSSIAN ELIMINATION 1

2. TRIANGULAR DECOMPOSITION k

3. THE SOLUTION PHASE 8

k. GAUSSIAN ELIMINATION PACKAGE ON ILLIAC IV 9

5. SPECIAL TERMINOLOGY USED IN ASK DESCRIPTION 10

6. I/O ALGORITHMS FOR TRIANGULAR DECOMPOSITION PHASE 11

7. TRIDEC - THE TRIANGULAR DECOMPOSITION PHASE 15

8. I/O ALGORITHMS FOR BACK SUBSTITUTION PHASE 17

9. GAUSS - THE BACK SUBSTITUTION PHASE 19

10. USE OF THE GAUSSIAN ELIMINATION PACKAGE 22





1. GAUSSIAN ELIMINATION

The Gaussian Elimination Process (used to solve systems of simultaneous

linear equations) involves reducing the (square) matrix of coefficients into

an upper triangular matrix and performing back substitution to produce the

solution. The reduction to an upper triangular matrix is done in N-l steps

(where N is the order of the matrix) as follows:

The system of equations is written as

a
il

X
l

+ a
i2

X
2

+ a
l3

X
3

+ + a. x = b
In n 1

a
21

X
l

+ a
22

X
2

+ a
23

X
3

+ + a x = b
2n n 2

a\ x„ + a . x^ + a _ x^ +
nl 1 n2 2 n3 3

+ a* x = b
nn n n

In forming the upper triangular matrix, the first derived system is found

by multiplying the first row by a /a (for a ^ 0) and subtracting the

pro duct from the i
l

row (i > l). This produces

a
il

X
l

+ a
i2

X
2

+ a
i3

X
3

+

a
(l)

x + a
(l)

x +
22 2 23 3

(1) (1)
a
n2

X
2

+ a
n3

X
3

+

+ a. x
In n

4lJ
»

2n n

= b

= b

1

(1)

2

(1) .(1)
+ a x = b

nn n n

The new coefficients are given by

a...

*..-— a
li

i«J a..1J 11

i,j = 2, . .. , n

^=b. -ii b
i an 1

i = 2,

The second derived system is produced by multiplying the second row by

a. p/ap „ (for a_
p ^ 0) and subtracting the product from the i row (i > 2)

This results in:



a
ll

X
l

+ a
12

X
2

+ a
13

X
3

+

a
(l)

x + a
(l)

x +a
22

X
2

a
23 3

a
(2)

x +a
33

X
3

a<
2
>x

q
+

n3 3

+ an x
In n

a'
1 '*

2n n

a<
2
>x

3n n

= b

= b

= b

1

(1)

2

(2)

(2) ,(2
+ a x = b

nn n n

The new coefficients are given by

a
i2 (1)

Jo)
a
2j

a
22

(1)
a
i2 ,(1)
TiT b

2
a
22

(2) (1)
a. . = a. .

J 2
) J 1 )

b. = b.
i l

i, J = 3,

i = 3, , n

Continue this process (through n-1 iterations) until the entire upper

triangular matrix has been formed. At each step k, the new coefficients

are found using the formulae:

(k-l)

a
(k) = a

(k-l) _ flk (k-1)
a
ij

a
ij

Q ^ k_1 ) ^J
*kk

(k-1)

,(k) ,(k-l) ik .(k-1)
b
i

= b
i

" H£l) \
\k

i, J = k+1,

i = k+1 , . .
.

, n

The final upper triangular matrix is

a, , x^ + x„ +
11

X
l

+
\2 X

2
+
^3 X

3

a
(l)

x + a
(l)

x +a
22

X
2

a
23 3

(2)
a
33

X
3

+

+ a. x
In n

x = b

+ a
2n

X
n

= b
2

1

(1)

afx = bf3n n 3

•
a
(n-l) . b

(n-lj
nn n n



The diagonal elements in this system must all be non-zero. If a

diagonal element is found which is zero, that row must be interchanged with

some subdiagonal row in the system which contains a non-zero element in

that position. This interchange does not affect the solution. If no such

row can be found, then the matrix is singular, and no solution is possible.

The back substitution phase of Gaussian Elimination computes the

solution vector x. This is done using the formula:

[.(i-1) Y (i-1) I
b. - > a.

.

x. 1 = n, ..
.

, 1

j=i+l 1J J J
li °



2. TRIANGULAR DECOMPOSITION

The Gaussian Elimination algorithm described in Chapter 1 is fine for

matrices which are solved once and then forgotten. However, if the same

matrix of coefficients is to be used with several right-hand sides (perhaps

at different points in time), then it would be desirable to be able to

find a solution without re- calculating the upper triangular form of the

matrix. Since the same operations must be performed on the right-hand side

as on the matrix of coefficients, one cannot merely save the upper diagonal

form to use again.

The solution of this problem is to use the technique of triangular

decomposition. Any nonsingular (square) matrix A can be decomposed into

the product of a lower triangular matrix L_ and an upper triangular matrix U

(A = LU) where U is the matrix formed in the first phase of Gaussian Elimina-

tion and L contains the multipliers used in reducing A to U. The lower

triangular matrix L looks like:

-a
21

11

-a
31

11

-a
hi

11

-a
(1)'

32

22

-a
(l)

a
n2

~JTT
a
22

(n-2)"a
in,n-l

n-l,n-l

Furthermore, since the diagonal elements of L are all ones, they need

not be stored. Thus, both L and U can be stored in a single n x n matrix,



possibly overwriting A.

Once A has been decomposed in this manner, a solution for any right-hand

side b can be found by solving the equations.

Ly = b for y, and

Ux = y for the solution x.

The solution Ux = y is precisely the back substitution described above for

Gaussian Elimination.

L_ and U are formed simultaneously from left to right one column at a

time using the equations:

Column 1:

a
ll

=
\l

a
il

=
*il

U
ll

i= 2, .... n

Column 2:

\2
= U

12

a
22

=
*21 U

12
+ U

22

a
i2

= l
ll \2 + l

i2
U
22

i = 3, ..., n

Continue in this fashion to generate column r (l < r < n) using the general

equation:

lr lr

a = £ u. + u
2r 21 ±r 2r

a = I u. +£.u + + I
n

u +u
rr rl lr r2 2r r,r-l r-l,r rr

a. = I

.

_ u. +£. un + + I. u i = r+1 , .... n
lr ll lr i2 2r ir rr



The above equations compute L_ and U simultaneously, column-by-column,

and overwrite A as the decomposition is formed. No calculations are done

on the right-hand side (b) at this point.

The complete separation of decomposition and the actual matrix solution

allows the two phases to be coded as separate routines. This is advantageous

since other matrix problems (notably inversion of a matrix) can proceed

smoothly using L_ and U rather than A.

There are two problems associated with triangular decomposition which

need to be considered. The first is positioning for size. As mentioned in

the discussion on Gaussian Elimination, all diagonal elements of U must be

non-zero. This requires that a minimal amount of row interchanging be done.

The second problem is scaling. Computers introduce some inherent error into

any computation through round-off, truncation, etc. A matrix having a large

range of magnitudes can quickly lose accuracy because of computer error. One

way to reduce error is to use pivoting to assure the largest possible (in

magnitude) divisor on the diagonals. Since complete pivoting requires exten-

sive, messy coding, partial pivoting is generally used.

In partial pivoting, the diagonal and subdiagonal elements in any column

are scanned, and the element having the largest magnitude is selected to be

the diagonal (pivot) element. The row containing that element is interchanged

with the row containing the diagonal position. Computation then proceeds

normally. A record must be kept of all row interchanges to facilitate

solving Lv = b. Also, because triangular decomposition is performed column-

wise, two restrictions must be observed:

1) Do not interchange elements of the row to the left of the column

being calculated.

2) Update a new column before searching for a pivot. (Step 1 of the

sequential algorithm below)

.



To further reduce computer error, all calculations should he done

using double precision arithmetic.

The algorithm for forming the triangular decomposition of a square

matrix A on a sequential (conventional) computer follows below- The

algorithm generates the r column of L and U , (P. records the number of
J

the row interchanged with row j to achieve partial pivoting in column j):

1) Place the double-length equivalent of column r into D (a 1 x n

double precision vector). For j = 1, ..., r-1 do the following:

a) Take D > convert it to single precision to get u, , and

overwrite a. with the result. Overwrite D_ with D..
jr Pj j

b) For i = j+1, .... n subtract £.. u. from D. using double
ij jr i

precision arithmetic. Overwrite D. with the result.

2) (Partial Pivoting). Select the largest D. , i = r, ..., n, call it

D-. , round it to single precision to get u , and overwrite a
Pr rr rr

with u . Store P and overwrite El, by D
rr r P„ j

3) For i = r+1, .... n, divide D. by u to get £ . (which gives a
l rr lr

single precision result) and overwrite a. with the result.
lr



8

3. THE SOLUTION PHASE

The solution phase uses the decomposition of A and the right-hand side

vectors b , ..., b m to find the solution vectors x , ..., xm. The right-

hand sides must first he updated to put them in the same form as the U matrix

i.e., solve the equation Uy = b for y. This is done as follows for each

vector ~b'

Put the double length equivalent of b. into D. , i=l , ..., n.

For i=l, ..., n do the following:

1) Round D to single precision to get v., overwrite D with D.

.

p. i p. l

2) For j = i+1, .... n subtract £.. v. from D. and overwrite D.
Ji i J J

using double precision arithmetic.

Now that the vectors b , ••., b m are in the same form as U, the solutions

can be found using the back substitution method. For each right-hand side,

do the following (right-hand sides are still in double precision form in E>)

:

For i=n, ..., 1 perform the following calculations:

1) Divide D. by u.jj to get x. .

2) For j = i-1, ..., 1 subtract u. . x. from D..
Ji i J

This forms the solution x to the equation Ax = b

.



k. GAUSSIAN ELIMINATION PACKAGE ON ILLIAC IV

Up until now, we have "been talking about sequential algorithms for

solving systems of linear equations. The remainder of this report

concerns two subroutines written for a parallel processor computer

(illiac IV) in the assembly language for that machine (ASK). Special

considerations and problems related to the machine are discussed in

detail.



10

5. SPECIAL TERMINOLOGY USED IN ASK DESCRIPTION

The following terms are used in the discussion of the ASK version of

the Gaussian Elimination algorithm:

Matrix - the m x m input matrix, in the form described under "use

of the Gaussian Elimination package".

Segment - an m x 6k piece of the matrix (i.e., 6k columns).

Tract - a 6k x m piece of the matrix (i.e., 6k rows).

Field - a 6k x 6k piece of the matrix (i.e. the intersection of a

segment and a tract).

Order - a 1 x N matrix (where N is the order of the array) which

contains the ordering information from the triangular

decomposition phase. (i.e. order contains the record of

all row interchanges made during triangular decomposition

in order to achieve partial pivoting).



11

6. I/O ALGORITHMS FOR TRIANGULAR DECOMPOSITION PHASE

Because Illiac IV has a limited amount of memory, the matrices used in

this routine are non-core-contained. This means that I/O methods are crucial.

They must he the most efficient possible to reduce the amount of I/O wait

time to a minimum. In the triangular decomposition phase, the unit of I/O

is a field. This is the smallest amount of data read into core or "written

onto disk at any one time. Memory is divided into buffers or 6U rows each,

allowing each buffer to exactly contain one field. Pointers are set up to

each buffer, and a table is kept for fields containing information such as

whether it is in memory, which buffer it is in, where on disk it is located,

if there is an uncompleted read or write in progress, etc.

In triangular decomposition, the matrix is decomposed by segments. A segment

is read in and updated by all the columns of the matrix. In order to reduce

round-off errors, each field of the segment to be updated is processed using the

fields to the left of it in that tract of L_ before the next field is started.

The segment is then decomposed and written onto disk. In order to make updating

tracts possible, row interchanges must involve the entire row (including elements

of both U_ and L) instead of only the y_ elements of the row (which was done in

the sequential version.) Thus, the third phase of processing a segment is to

read in appropriate fields of each segment to the left and interchange the

rows that were necessary for partial pivoting in the segment just processed.

In order to maximize the chances that information is in core when it is

needed, the following read algorithm is initiated whenever Na field buffer is

freed. (DONEFLAG = non-zero indicates that all information needed to complete

triangular decomposition has been read):

l) If DONEFLAG non-zero, go to step 12.



12

2) Test condition flag:

If CONDITION all zeros, go to step 5.

If CONDITION mixed, go to step 3.

If CONDITION all ones, go to step 9.

3) (Read in segments to do row interchanging): Increment tract number

by 1. (If greater than maximum tract in matrix, go to step k .) Test

that field of the segment being read. If it is already in core,

repeat step 3. If not, read it, set up proper pointers, and go to

step 12.

h) Increment segment number by 1. If the result equals the number of

the segment just decomposed, then go to step 10. Otherwise, set

the tract number equal to the number of the segment just decomposed

and test that field of the current segment. If it is in core, go to

step 3. Otherwise, read it, set up proper pointers, and go to step 12

5) (Read fields of L in current tract for updating new segment prior to

decomposition): If an unread field containing elements of L cannot

be found in this tract, go to step 6. Otherwise, read the left-most

such field, set up proper pointers, and go to step 12.

6) Increment the tract counter. If the new counter is greater than the

maximum tract in the matrix, go to step 'J. Otherwise repeat step 5.

7) Set condition flag to mixed (i.e., next read will get segments for

updating row- interchanges). Set segment counter to 0. Set tract

number equal to number of segments to be decomposed. If the field

of the segment to be read (which is pointed to by the tract number)

is in core, go to step 3. Otherwise read it, set up proper pointers,

and go to step 12.



13

8) (Read the next segment to be decomposed that is not already in core):

Increment tract counter. If it is greater than the maximum tract

in the matrix, go to step 9- Otherwise, read that field of the

segment, set up proper pointers, and go to step 12.

9) Set condition flag to all zeros (i.e., next read "will begin reading

tracts of L_ to update segment to be decomposed). Set tract number

to 0. If first field of first tract is in core, go to step 5.

Else read it, set up proper pointers, and go to step 12.

10) If all segments yet to be decomposed have not been read, go to step

11. If all tracts needed to update the segment to be decomposed

next have not been read, go to step 9. Otherwise, set DONEFLAG to

non-zero and go to step 12.

11

)

Set condition flag to all ones (i.e. next read will begin reading a

segment to be decomposed). Set tract number to 0. Increment counter

for segments to be decomposed. Read first field of segment, set up

proper pointers, and go to step 12.

12) End read routine.

The output algorithm is equally important. Fields are only written onto

disk when necessary. Thus, the following rules cover output procedures:

1) While computing the decomposition of any segment, write each field

onto disk as soon as it is completed.

2) While making row interchanges on segments previously decomposed,

write any fields that were changed onto disk when all interchanges

are complete on the segment.



Ik

The last important consideration for I/O is the algorithm used to free

buffers. The rules governing this phase are as follows:

1) During the update phase (updating segment to be decomposed by

previously calculated segments), fields of L used in the updating

should be freed as soon as they are used.

2) During the row interchange phase (updating previously calculated

segments by segment just decomposed) free unchanged fields of L_

as soon as all interchanges are made to the segment.

3) Free fields of the segment being decomposed only after all compu-

tations have been completed.

h) Free any field being ouput as soon as the write is completed.

5) Whenever a buffer is freed, initiate a new read into that buffer

immediately.



15

7. TRIDEC - THE TRIANGULAR DECOMPOSITION PHASE

TRIDEC is an ASK subroutine which performs the triangular decomposition

phase of Gaussian Elimination in a parallel manner on Illiac IV. In the

following discussion, whenever operations on rows or columns of the matrix

are referred to, the algorithm will perform the operation iteratively on

up to 6k elements of the row or column simultaneously.

L and U are formed column-wise working from left to right through the

matrix. Since the matrix is non-core-contained, only one segment of the

matrix is assumed to he in core at any given time. The decomposition must

therefore occur in three steps:

l) The update phase - For each segment S_ after the leftmost one, the

following steps must be taken to bring the data up to date; i.e.,

the same operations must be performed on segments S_ as have been

previously performed on segments 0, 1, ..., S_-l.

a) Make all row interchanges in segment S_ that have previously

been made in earlier segments in order to accomplish partial

pivoting, i.e., for i = 0, 1, ..., S_®6U-1 interchange row i

with row 0RDER( i) in the segment.

b) Let I indicate which field of segment S_ is being updated. Let

J represent the total number of tracts in the matrix (counting

from 0). For 1=0,1, . .
.

, J do the following:

Let K be the number of fields of L which are to the left of

segment S (i.e., for tracts 0, 1, ..., S-l , we have k = 0,1,..., S-l.

For tracts S, ..., j we have k = S-l). Let L represent which field

of tract I is being updated by. Then for L = o, 1, .. ., ^ do

the following:



16

Let Q indicate which column of field L is being used.

Let R indicate which column of segment S_ is being

updated. For R =0, 1, ..., 63 do:

For Q = 0, 1, ..., 63 multiply element Q of field L

of segment S_ by column Q of field L of tract I

.

Subtract the result from column R of field I of

segment S.

2) Decomposition Phase - The U elements in fields 0, 1, ..., S-l are now

computed. If only remains for us to compute the elements of L_ and the

few elements of U located in field S. Let i represent the columns of

S_. For i = 0, 1, .. .., 63 do the following:

a) Find the maximum magnitude among elements 6k (g> S+i through m of

column i. Set order (6k @S+i) to the row number of that maximum

element. Interchange rows 6k (K) S+i and order (6k ©S+i).

b) Divide the subdiagonal elements of column i by the new diagonal elemenl

c) Let j represent the columns in S_ to the right of column i. For

j = i+1, ..., 63, multiply the subdiagonal elements of column i by

element 6k Q S+i of column j. Subtract the product from the corre-

sponding elements of column j.

3) Row Interchange Phase - In order to update new segments tract-wise, all

elements in rows must be interchanged. The newly-completed segment is

being written onto disk. At this time, previous segments are updated.

Let I indicate the segment being updated. Read in only fields S, S+l

,

..., J of each segment. For 1=0, ..., S-l do the following:

Let k indicate the row interchanges necessary. For k= S © 6k , ...,

(S+l) © 6k-l interchange row k and row ORDER(k) of segment I.



IT

8. I/O ALGORITHMS FOR BACK SUBSTITUTION PHASE

As previously stated in the triangular decomposition discussion,having

a non-core-contained matrix forces the I/O algorithms to assume a prominent

position in the algorithm being coded. The back substitution phase poses

less problems than the decomposition phase, but I/O still maintains a position

of importance. Back substitution is done in two steps - manipulate a set of

right-hand sides to correspond to the decomposed matrix (Ly = b), and perform

back substitution to get a solution to the matrix (Ux = y). The read algorithm

below assures that input wait time is minimal:

1) If DONEFLAG non-zero, then go to step 9- Otherwise go to step 2.

2) If last input was a field from U, go to step 6. Otherwise go to

step 3.

3) If no unread field of L_ exists in current tract, go to step k.

Else read first such field, set up proper pointers, and go to step 9-

k) If current tract is last tract in matrix, go to step 5. Otherwise

increment tract counter by 1 and go to step 3.

5) Set flag to indicate reading fields of U_. Decrement tract counter

by 1 and go to step 6.

6) If no unread field appears in current tract, go to step 7. Else

read first such field, set up proper pointers, and go to step 9.

7) If current tract is tract 0, go to step 8. Else decrement tract

counter by 1 and go to step 6.

8) Set DONEFLAG non-zero. Go to step 9-

9 ) End read algorithm.

Fields of L and U are never output. The right-hand sides of the matrix

are read in segments of 6k columns each. The right-hand side is output when

the back substitution is complete.



18

New fields are read whenever a buffer is freed. The rules governing the

freeing of buffers are as follows

:

1) All subdiagonal fields of L are freed as soon as they have been used.

2) The diagonal fields of L_ are freed as follows:

a) If the matrix has 10 tracts or less, do not free the diagonals

of L.

b) If the matrix has between 11 and 17 tracts, free all but the

last four diagonals.

c) If the matrix has more than 17 tracts, free all but the last

diagonal.

3) Free all fields of U immediately after use.



19

9. GAUSS - THE BACK SUBSTITUTION PHASE

GAUSS is an ASK subroutine which performs the back substitution phase of

the Gaussian Elimination process in a parallel manner on Illiac IV. It

assumes that the matrix to be solved has already been decomposed into L_ and

U by TRIDEC .

The solution of the matrix is computed from L and U using the method of

back substitution described above for Gaussian Elimination. Any number of

solutions may be found --one for each right-hand side provided by the user.

Up to 6k solutions can be found at one time. The results are obtained by

working from bottom to top through the matrix. Elements of U are read in

tract-wise from bottom to top. To minimize round-off error, only one field

at a time of the right-hand side is involved with the calculation.

The solution is found in two steps. First, the right-hand side must

undergo the same transformation as the original matrix did during the decompo-

sition process described above. This is done by solving LJ = b for y.

Second, the back substitution mentioned above is carried out in order to

find the solution. This is done by solving Ux = y for x. These steps are

described below:

l) Update right-hand sides: In order to perform back substitution, the

right-hand sides must be permuted in the same way that the matrix was

permuted in forming U. The information necessary to do this permuta-

tion is contained in L_ and ORDER . The permuting of the right-hand

sides b is done in two phases. Let n represent the number of rows

in b. Hence n-1 is the index of the last row of b. (Numbering

begins at zero)

:

a) For 1=0, . .., n-1 interchange row I of b with row ORDER(l) of

b. This aligns the rows in the same order as the rows in L and U.



20

b) Solve Ly = b for y. This is done by tracts of L. Let m be

the number of the last tract of L: m = (n-l)/61+. Let I be

the tract counter. For 1=0, . .
.

, m do the following:

Let J indicate fields within tract I. For J = 0, ..., I

do the following:

Let K indicate the columns within field J of tract I of

L. For K = 0, ..., 63, do the following:

Let P indicate the columns of field I of the segment

of right-hand sides for which a solution is currently

being found. For 1 = 0, ..., Q (where Q = number of

columns in the segment), do the following:

Multiply column K of field J of tract I of L

by element P of row K of field J of the segment

of right-hand sides and subtract the products from

column P of field J of the segment of right-hand

sides

.

Back Substitution: The solution is found by performing back substitu-

tion using U and the array of permuted right-hand sides. It is

computed tract-wise from bottom-to-top using the back substitution

algorithm described below. There are two steps necessary in perform-

ing back substitution because the matrix is not core-contained.

For tracts I = m, ..., of U, do the following:

a) Update Phase: The current field of right-hand sides must be

updated by that part of the solution already computed. Let S

indicate fields of tract I. For J = 1+1 , ..., m do the following:

Let K indicate the columns within field J of tract I of U.

For K = 0, ..., 63, do the following:



21

Let P indicate the columns of field I of the segment

of right-hand sides for which a solution is being

computed. For P = 0, ...', Q (where Q is the number of

columns in the segment), do the following:

Multiply column K of field J of tract I of U by

element K of column P of field J of the segment of

right-hand sides and subtract the products from

column P of field I of the segment of right-hand

sides,

b) Computation Phase: Let J indicate the columns of field I of

tract I of U. For J = 63, ..., 0, do the following:

Divide row J of field I of the segment of right-hand sides

by element J of column J of field I of tract I of U. Let

K indicate columns of field I of the segment of right-hand

sides. For K= 0, ..., Q (where Q is the number of columns

in the segment), do the following:

Multiply the superdiagonal elements of column J of

field I of tract I of U by element J of column K of

field I of the segment of right-hand sides and subtract

the products from the corresponding elements of column

K of field I of the segment of right-hand sides.



22

10 . USE_0F THE GAUSSIAN ELIMINATION PACKAGE

Triangular Decomposition:

The triangular decomposition routine (named TRIDEC ) is an ASK subroutine

(called in the standard fashion) with these parameters:

MATRIX - an m x m (square) matrix (m * n). On entrance, it contains the

matrix to he decomposed. The matrix is expected to he padded on

the bottom and to the right with rows and columns of zeros so that

m is a multiple of 6k. (This is important in simplifying the coding

so that execution time may be cut). It is expected that the matrix

will be located on disk. It is further expected that the matrix

was read onto disk in the following manner:

Store the matrix tract-wise by fields and store fields by

rows, i.e., let Q be the number of the last tract in the

matrix (Q = (n-l)M). For tracts 0, .... Q do the following:

Let I indicate which field in the tract is being written.

Let J indicate which row of field I is being written.

For I = 0, ... , Q, do the following:

For J = 0, ...,63, write row J onto disk.

The actual parameter passed is the disk reference of the matrix.

Upon completion of the algorithm, the matrix will have been over-

written and will contain L and U, i.e. the decomposition of the

matrix.

N - The order of the matrix to be decomposed (before padding).

EPS - The desired cut-off value for determining the singularity of the

matrix. If, after partial pivoting is done, the pivot element

has a magnitude less than EPS, then the matrix is considered to

be singular and computation ceases. It should be noted that since



23

the absolute magnitude of the pivot is used, an EPS should be

chosen which reflects the magnitude of the elements in the

matrix. (e.g., an EPS of 10 ' may work fine with a matrix

3
having elements of magnitude 10 , but would be worthless in a

matrix having elements of magnitude 10 ).

ORDER - A 1 x m array which will keep track of all the row interchanges

necessary to achieve partial pivoting. The actual parameter

passed is a reference to the disk location where the data is

stored.

FAIL - A label to which control is passed if the input matrix turns

out to be singular.

Back Substitution:

The back substitution routine (named GAUSS ) is an ASK routine (called in

the standard fashion) with these parameters:

MATRIX - The m x m (square) matrix containing L_ and U which is the output

of TRIDEC . The actual parameter passed is the disk reference

of the matrix.

N - The same N used by TRIDEC .

RIGHTSIDE - An M x Q array containing P (P < Q) right-hand sides for which

solutions are to be found. It is padded with columns and rows

of zeros (as was MATRIX ) so that Q is a multiple of 6k. It is

located on disk stored segment-wise (i.e., for segments 0, ..., R

(R = (P-l)/6U) store fields 0, ..., S (S = (N-1/6U) onto disk by

rows). The disk reference is the parameter passed to GAUSS .

Upon completion of the subroutine, RIGHTSIDE will have been over-

written and will contain the solution vectors x^ , ..... x .

~0 ~P



2k

P_ - The number of right-hand sides for which solutions are desired

(1 < P < 2^ -l).

ORDER - The disk reference of the ORDER matrix generated by TRIDEC

.

Not e s Ab out Us age

:

TRIDEC and GAUSS are designed to handle large, general matrices.

(Matrices of order N < l66k are accepted). The following comments should

be considered before using these routines:

1) If your matrix is of order N < 6U, do not use these routines as

they are not efficient for arrays of that size. A Gaussian Elimina-

tion routine is available which accepts only matrices of order N < 6k.

2) If your matrix is of a special type (symmetric, sparse, etc.) there

is probably a solution routine available for it which

can take advantage of its special properties. GAUSS and TRIDEC

cannot do this.

3) The algorithms are most efficient for matrices having an order N < 600,

They will accept matrices up to N = l66k , but the closer one gets to

that limit, the more time will be spent doing I/O. By the time l66k

rows are reached, most of the execution time will be spent in an

I/O wait state. Thus a large matrix will need an enormous amount of

time to execute.



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security claealHcatlon el title, body el ibilwcl and Indenrng annotation mi ad when the overall report I* claeellled)

ORIGINATING ACTIVITY (Corporate author)

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

la. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2b. GROUP

REPORT TITLE

An ILLIAC IV Gaussian Elimination Package for Non-Core-Contained Matrices

DESCRIPTIVE NOTES (Type el report and rnclualro date*)

Research Document
AUTHORISI (Ftret nmete, middle Initial, laat name)

Susan Ann Pace

REPORT DATE

September 1, 1972

»•>. TOTAL NO, OF PAGES
30

7b. NO. OF REFS

a. CONTRACT OR GRANT NO.

DAHCOU 72-C-OOOl
b. PROJECT NO.

ARPA Order No. 1899

•a. ORIGINATOR'S REPORT NUMSERIS)

CAC Document No. kO

•b. OTHER REPORT NOIII (Any other number* that may be aaalgnad
thia report)

0. DISTRIBUTION STATEMENT

Copies may be obtained from the address given in (l) above.

t. SUPPLEMENTARY NOTES 12. SPONSORING MILI TARV ACTIVITY

U.S. Army Research Office-Durham
Duke Station, Durham, North Carolina

i. ABSTRAC T

Gaussian Elimination is a method used to find the solution vector x
rv

of the equation A x - b where A is any general, non- singular, square matrix
and b is a vector. The process can be broken down into two independent
phases:

(1) The triangular decomposition of the matrix .A, and

(2) The back substitution process to find the solution x.

This paper describes the Gaussian Elimination algorithm and the ILLIAC IV
routines which perform the process.

I»D .'.T..1473 UNCLASSIFIED
Security Classification



UNCLASSIFIED
Security Classification

KEY WORD*

Gaussian Elimination
Triangular Decomposition
Guassian Elimination Package on ILLIAC IV
TRIDEC-The Triangular Decomposition Phase
Back Substitution

Mathematics of Computation
Numerical Analysis
Linear Algebra
Matrix Algebra

UNCLASSIFIED
Security Classification















>J N0 6^




